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Abstract

In the 70 years since progesterone (P) was identified in corpus luteum extracts, its metabolism has
been examined extensively in many tissues and cell lines from numerous species. In addition to the
reproductive tissues and adrenals, every other tissue that has been investigated appears to have one
or more P-metabolizing enzyme, each of which is specific for a particular site on the P molecule. In
the past, the actions of the P metabolizing enzymes generally have been equated to a means of
reducing the P concentration in the tissue microenvironment, and the products have been dismissed
as inactive waste metabolites. In human breast tissues and cell lines, the following P-metabolizing
enzymes have been identified: 5a-reductase, 3a-hydroxysteroid oxidoreductase (3a-HSO), 33-HSO,
200-HSO, and 6a-hydroxylase. Rather than providing diverse pathways for inactivating and
controlling the concentration of P in breast tissue microenvironments, it is proposed that the enzymes
act directly on P to produce two types of autocrines/paracrines with opposing regulatory roles in
breast cancer. Evidence is reviewed which shows that P is directly converted to the 4-pregnenes, 3a-
hydroxy-4-pregnen-20-one (3a-dihydroprogesterone; 3aHP) and 20c.-dihydro-progesterone (20aHP),
by the actions of 30-HSO and 200-HSO respectively and to the 5a-pregnane, 5a-pregnane-3,20-
dione(5a-dihydroprogesterone; 5aP), by the irreversible action of 5a-reductase. In vitro studies on a
number of breast cell lines indicate that 3aHP promotes normalcy by downregulating cell proliferation
and detachment, whereas 5aP promotes mitogenesis and metastasis by stimulating cell proliferation
and detachment. The hormones bind to novel, separate, and specific plasma membrane-based
receptors and influence opposing actions on mitosis, apoptosis, and cytoskeletal and adhesion
plague molecules via cell signaling pathways. In normal tissue, the ratio of 4-pregnenes:5a-
pregnanes is high because of high P 3a- and 20a-HSO activities/expression and low P 5a-reductase
activity/expression. In breast tumor tissue and tumorigenic cell lines, the ratio is reversed in favor of
the 5a-pregnanes because of altered P-metabolizing enzyme activities/expression. The evidence
suggests that the promotion of breast cancer is related to changes in in situ concentrations of cancer-
inhibiting and -promoting P metabolites. Current estrogen-based theories and therapies apply to only
a fraction of all breast cancers; the majority (about two-thirds) of breast cancer cases are estrogen-
insensitive and have lacked endocrine explanations. As the P metabolites, 5¢P and 3«HP, have been
shown to act with equal efficacy on all breast cell lines tested, regardless of their tumorigenicity,
estrogen sensitivity, and estrogen receptor/progesterone receptor status, it is proposed that they offer
a new hormonal basis for all forms of breast cancer. New diagnostic and therapeutic possibilities for
breast cancer progression, control, regression, and prevention are suggested.
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Introduction

The name ‘progesterone’ was first adopted in 1935
(Allen 1970), shortly after it was isolated from corpus
luteum extracts (Allen & Corner 1929), purified (Allen
1930, Slotta et al. 1934), and structurally identified
(Butenandt 1934). In the 70 years since its discovery,
nearly 100000 papers have been published dealing
with progesterone P; (4-pregnene-3,20-dione) on many

Endocrine-Related Cancer (2006) 13 717738

1351-0088/06/013—-717 © 2006 Society for Endocrinology Printed in Great Britain

levels. As the name implies, its main actions have been
linked primarily to human female reproductive aspects
involving the uterine changes associated with the
menstrual cycle and gestation. However, P is now
known to influence (directly or indirectly) many other
tissues and facets of regulatory physiology and
endocrinology, including those of the mammary
glands. Soon after its discovery, the metabolism of
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P began to be investigated, primarily with the aim of
determining its route of inactivation. It has become
apparent that many tissues have P-metabolizing
enzymes, which can modify different parts of the
molecule. Although the resulting metabolites have
been shown, in some tissues, to be active molecules in
and of themselves, for the most part there has been a
reluctance to accept them as anything other than waste
products, with their formation as a means of decreasing
the local P concentrations.

PR has long been linked to the proliferative changes in
the normal breast, but its role in breast cancer is unclear.
Recent studies have provided evidence that P metabolites
formed in breast tissue have regulatory functions with
respect to breast cancer that may previously have been
attributed to P. We first suggested (Wiebe et al. 2000) that
the P metabolites produced within breast tissues might be
independently active hormones functioning as cancer-
promoting or -inhibiting regulatory agents. By this
hypothesis, the maintenance of normalcy or progression
to neoplasia would depend on the ratios of pro- to anti-
cancer P metabolites in the local breast tissue
microenvironment.

The aim of this review is to summarize
observations which indicate that most (if not all)
tissues/cells may have some capacity to convert P
and that mammary tissue in particular has enzymes
which catalyze the direct conversion of P to two
classes of active metabolites. Evidence is reviewed
that these P metabolites function as independent pro-
or anti-cancer autocrine/paracrine hormones that
regulate cell proliferation, adhesion, apoptosis and
cytoskeletal, and other cell status molecules via
novel receptors located in the cell membrane and
intrinsically linked to cell signaling pathways.
Current endocrine therapies are based on suppres-
sing estrogen levels or inhibiting its actions.
Unfortunately, only a fraction of all breast cancer
patients respond to this estrogen-based therapy and
the response is only temporary (McGuire 1987). As
the breast tissue P metabolites act on breast cell
lines regardless of their tumorigenicity, estrogen
sensitivity and estrogen receptor (ER) and progester-
one receptor (PR) status, they are suggested to
provide a new endocrine-based explanation for
progression to the various forms of breast cancer
as well as for the maintenance of normalcy in breast
tissues. Based on the findings, it is proposed that in
breast tissue P serves as a precursor for active
steroid hormones whose relative concentrations
determine the levels of mitogenic, apoptotic, and
metastatic activities locally within the tissue.
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Progesterone is metabolized by many tissues

Soon after its identification, a large number of studies
followed to determine the metabolism of P. In the early
decades, many workers in the field identified and
measured urinary metabolites of P with the aim of
ascertaining how the body inactivated this progestagen.
By 1954, almost 100 naturally occurring steroids had
been isolated from tissue and urinary sources (Dorfman
1954). The urinary P derivatives were assumed to result
from metabolism in the liver and included 5B-pregnanes
such as pregnanediol (5B-pregnane-3a,20a-diol) and
pregnanolone (5B-pregnan-3a-0l-20-one) as well as the
Sa-pregnanes, Sa-pregnane-3,20-dione (5cP), Sa-preg-
nan-3a-0l-20-one, Sa-pregnan-3B-ol-20-one, and
Sa-pregnan3-3a(B), 20a-diols (Atherden 1959). The
rapid metabolism of intravenously administered
["“Clprogesterone by eviscerated rats (Berliner &
Wiest 1956, Wiest 1956) in which tissues such as liver,
spleen, gut, and adrenals had been removed, showed that
P conversion was also occurring extrahepatically. It then
soon became apparent that P serves as the precursor for
the major steroid hormones (androgens, estrogens,
corticosteroids) produced by the gonadal and adrenal
cortical tissues.

A large number of metabolism studies on a variety
of reproductive tissue from various species and
physiological states showed that P is not only
converted to the well-known steroid hormones such
as estradiol and testosterone, but also to various
21-carbon derivatives for which there were no well-
defined functions (Fig. 1). Studies on uterine tissues
from rats (Marrone & Karavolas 1981, 1982, Redmond
& Pepe 1986), guinea pigs (Glasier et al. 1994,
Hobkirk er al. 1997), and humans (Bryson & Sweat
1967, 1969, Pollow et al. 1975, Milewich et al. 1977,
Arici et al. 1999), as well as placentae from humans
(Little et al. 1959) and goats (Sheldrick et al. 1981),
showed the presence of numerous P-converting
enzymes. Similarly, incubations with ovarian tissues
(especially granulosa cells) from rat (Zmigrod et al.
1972, Lacy et al. 1976, Nimrod 1977, de la
Llosa-Hermier et al. 1983, Moon et al. 1986, 1987,
Wiebe et al. 1994a), human (Sweat et al. 1960), and
chicken (Marrone 1986, Wiebe ef al. 1990), as well as
incubations with testicular cells or homogenates from
trout (Andersson & Rafter 1990), frog (Canosa et al.
1998), mouse (Kuwata et al. 1976), rat (Slaunwhite &
Samuels 1956, Wiebe 1978, Wiebe & Tilbe 1979,
Wiebe et al. 1980, Tilbe & Wiebe 1981), rabbit
(Matsumoto et al. 1976), and human (Savard et al.
1956, Stegner & Lisboa 1984), have shown
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Metabolites
— 5o-pregnanes (e.g. 50.P)
— 5B-pregnanes (e.g. 5pP)
— 4-pregnenes (e.g. 3aHP)
— corticosteroids (e.g. cortisol)
—androgens (e.g. testosterone)

— estrogens (e.g. estradiol)

Figure 1 The structure of progesterone and the major classes of steroids resulting from its metabolism. P, the 21-carbon precursor of
all the major steroid hormones produced in the gonads and adrenals, is also directly altered by enzymes within many, if not all, other
tissues. The enzymes are specific for particular sites on the molecule (examples indicated by the arrows) and their actions lead
directly to the 5a-pregnane, 5p-pregnane, and 4-pregnene metabolites of P and indirectly to the corticosteroids, androgens, and
estrogens. In this review, evidence is presented that in human breast tissue 5a-pregnanes and 4-pregnenes are hormones whose

actions may determine normalcy or progression to breast cancer.

the presence in these tissues of a number of enzymes
capable of converting P to a variety of products.

Numerous studies provided evidence that many of
the same P-metabolizing enzymes also exist in tissues
that are not directly associated with reproduction.
These include various regions of the central and
peripheral nervous systems (brain, cortex, spinal
cord, olfactory bulb, optic lobe, medulla oblongata,
cortex corpus callosum, pineal, hypothalamus, pitu-
itary, telencephalon, and neuronal and glial cells) from
quail (Ukena et al. 2001, Matsunaga et al. 2004),
chicken (Balthazart et al. 1988, Pignataro et al. 1998),
rat (Hanukoglu et al. 1977, Marrone & Karavolas
1981, 1982, Bertics et al. 1987, Korneyev et al. 1993,
Martini et al. 1993, Stuerenburg et al. 1997, Wiebe
et al. 1997, Pomata et al. 2000, Rhodes & Frye 2001),
mouse (Korneyev et al. 1993), monkey (Korneyev
et al. 1993), and human (Melcangi et al. 1993, 1994,
Patte-Mensa et al. 2005). P is also metabolized by
diverse tissues/cells such as fibroblasts (Perlman et al.
1960, Zhang et al. 1999), heart cells (Desgres et al.
1980), blood cells (Seamark et al. 1970), skin (Frost
et al. 1969, Mauvais-Jarvis et al. 1969), salivary glands
(Ferguson & Bannon 1983, Laine & Ojanotko-Harri
1990), saliva (Laine & Ojanotko 1999), and amniotic
fluid (Beling & Cederqvist 1978). Invariably, the
products of P metabolism in this diverse array of
tissues consist of 21-carbon compounds.

Thus, many metabolism studies from a large number
of tissues and various species had indicated that, in
addition to the gonads and adrenals, perhaps most, if
not all, tissues have some capacity to convert P to other
products. The studies had demonstrated the presence in
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tissues and cells of a number of enzymes capable of
acting on various sites in the P molecule, leading to the
formation of various classes of 21-carbon steroids, in
addition to the known hormones, as illustrated in
Fig. 1. These P-metabolizing enzymes included So-
reductase, 5B-reductase, 3o-hydroxysteroid oxido-
reductase (3a-HSO), 3B-HSO, 20a-HSO, 20B-HSO,
6a(B)-, 11B-, 17-, and 21-hydroxylase, and Ci7_5-
lyase. In spite of this large number of enzymes capable
of local transformation of P, the 21-carbon P
metabolites were for the most part considered to be
waste products and the P-metabolizing enzymes as a
means of controlling the local (in tissue) concen-
trations of P.

In terms of neoplasia, the presence of P-metaboliz-
ing enzymes had been demonstrated in rat testicular
interstitial cell tumors (Chatani et al. 1990), andro-
blastoma (Sertoli-Leydig cell tumor) (Stegner &
Lisboa 1984), dimethylbenz(a)anthracene (DMBA)-
induced rat mammary tumors (Mori et al. 1978, Mori
& Tamaoki 1980, Eechaute er al. 1983), human
endometrial carcinoma (Collins & Jewkes 1974,
Pollow et al. 1975), human breast tissues (Lloyd
1979, Miller 1990), modified breast cancer cell lines
(T47Dco) (Fennessey et al. 1986, Horwitz et al. 1986),
and virally transformed adrenocortical cells (Wiebe et
al. 1987). Although selective differences in P-
metabolizing enzyme activities between normal and
tumor tissues were noted in some of these studies, they
were not linked to any potential effects of the
metabolites themselves on cancer induction or pro-
motion prior to our studies (Wiebe et al. 2000).
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Progesterone metabolism in breast
tissues and breast cell lines

P was known to be involved in normal breast
development as well as in the proliferative changes
that occur during the menstrual cycle, pregnancy, and
lactation (Going et al. 1988, Potten et al. 1988).
However, its direct role in mammary cancer was not
clear (McGuire & Horwitz 1977, King 1993) and a
number of studies provided conflicting results. Some
reports indicated stimulation (Anderson et al. 1989),
while others observed regression of, or no effect on,
human tumors (Horwitz et al. 1985, Santen et al. 1990)
resulting from treatment with P or synthetic progestins.
Similarly, in other species such as rodents (Jabara
1967, Welsh 1982, Luo et al. 1997) and dogs (Segaloff
1975, Mol et al. 1996), progestins were shown to either
stimulate or inhibit tumor growth. In vitro studies of
the effects of progestins on human breast cancer cell
lines likewise showed either stimulation or inhibition
of cell proliferation and cell cycle progression
(Braunsberg et al. 1987, Clark & Sutherland 1990,
Cappelletti et al. 1995, King 1993, Pike et al. 1993,
Musgrove & Sutherland 1994, Clarke et al. 1994,
Groshong et al. 1997).

The conflicting results regarding the role of P in
breast cancer, in addition to the lack of evidence that
tumor progression could be substantially related to
changes in in situ P levels, led us to speculate about the
potential importance of further metabolism of steroids
occurring locally within the tumor and its adjacent host
tissue. This led us to hypothesize that P may be
converted within breast tissue into several types of
metabolites, some of which stimulate while others
inhibit cell proliferation and tumorigenesis. By this
hypothesis, P would serve as a precursor (or pro-
hormone) and the metabolites as the active hormones
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in regulating breast cancer. The state or progression of
mammary tumors could then depend on the ratio of
cancer-promoting to cancer-inhibiting steroid com-
pounds. If such P metabolites could be shown to exist,
they might provide an alternate or additional endocrine
explanation for the estrogen-sensitive and -insensitive
breast carcinomas as well as for normalcy of breast
tissues.

Breast tissues and breast cell lines convert
progesterone to 5a-pregnanes and 4-pregnenes

To test the hypothesis, studies were conducted to
determine the capacity of tumor and surrounding
normal (nontumorous) breast tissues to metabolize
['*C]P. The paired tissue specimens came from
premenopausal, menopausal and postmenopausal
women with various subtypes and grades of infiltrating
duct carcinomas and included tissues that were
estrogen-receptor (ER) and progesterone-receptor (P)
negative and/or positive (Wiebe er al. 2000). All the
breast biopsies examined converted [14C]P into at least
ten different metabolites that could be grouped into two
structurally different classes of steroids (illustrated in
Fig. 2): those with a delta-4 double bond in ring A (the
4-pregnenes) and those that are Sa-reduced (the Sa-
pregnanes). Reduction of P to Soa-pregnanes is
catalyzed by So-reductase and the direct Sa-reduced
metabolite of P is Sa-pregnane-3,20-dione (5cP). The
Sa-reductase reaction is irreversible, but SaP can in
turn be altered to 3- and 20-hydroxy pregnanes by the
reversible actions of 3a-HSO, 33-HSO, and 20a-HSO
(Fig. 2).

The two 4-pregnenes resulting from direct P
conversion are 4-pregnen-3a-o0l-20-one (3oHP) and
4-pregnen-20a-ol-3-one (20aHP), catalyzed by the
actions of 3a-HSO and 20a-HSO respectively (Fig. 2).

5a-reductase
——— > 5o-pregnanes

(cancer)

50.-P-38,60.-diol-20-one

=0 1 60-hydroxylase
5o-reductase M 50-P-30.(B)-0l-20-one
| 1LZOa-HSO
T N 50-P-30(p),200-diol
50P % ‘
O
WL 3a-HSO

50-P-200-0l-3-one

Figure 2 Progesterone conversion to 4-pregnene and 5a-pregnane metabolites by human breast tissues and cell lines. Note that
5a-reductase reaction is not reversible (see text for details; modified from Wiebe et al. 2005).
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The 4-pregnenes can be further reversibly converted to
4-pregnene-3a(3f),20a-diol. The same metabolic
pathways were subsequently demonstrated in four
different breast cell lines (Wiebe & Lewis 2003) and
had been previously identified in a number of tissues,
including gonads, pituitary, and hypothalamus (Wiebe
1997). In addition, in the human breast cell lines, the
final major product was Sa-pregnane-3,6a-diol-20-
one, indicating the presence of 6a-hydroxylase, an
enzyme that was also present in tissues at minor
activity levels. Thus, the P-metabolizing enzyme
activities identified in human breast tissues and cell
lines were: Sa-reductase, 3o-HSO, 3B-HSO, 20a-
HSO, and 6a-hydroxylase (Fig. 2).

Changes in progesterone metabolite ratios
and metabolizing enzyme activities

Although both normal (nontumorous) and tumorous
breast tissues converted P to the two classes of
metabolites, there were significant quantitative differ-
ences. In normal breast tissue, conversion to 4-pregnenes
greatly exceeded the conversion to Sa-pregnanes,
whereas in tumorous tissue, conversion to So-pregnanes
greatly exceeded that to 4-pregnenes (Fig. 3a). The
differences in amounts of 5a-pregnanes and 4-pregnenes
were mainly due to changes in the amounts of 5aP and
3oHP (Fig. 3b) and the ratio of SoP:3¢HP was nearly
30-fold higher in tumorous than in normal breast tissues.
The results indicated that P Sa-reductase activity is

(a) (b)
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significantly higher, whereas P 3a-HSO and 20a-HSO
activities are significantly lower in tumor than in normal
tissues (Wiebe er al. 2000). Earlier studies with cell-free
homogenates of breast tissues (Lloyd 1979, Miller 1990)
and chemically induced rat mammary tumors (Mori et al.
1978) had also shown higher 5a-reductase and lower
20a-HSO activities in tumors than in normal glands.
Confirmation of a shift in actual amounts of P
metabolites in the breast microenvironment has been
provided, in part, by measurements of 5aP and 3aHP
levels in breast tissue and nipple aspirate fluids (J P Wiebe,
E Sauter & G Zhang unpublished results). The amounts of
S0P and 30tHP in a paired tissue sample, determined by gas
chromatography—mass spectrometry, showed that levels
(ng/mg protein) were 15.5 and 4.3 for SaP and 5.5 and 12.7
for 3aHP respectively in the tumor and adjacent nontumor
portion, confirming a higher 5¢P:3aHP ratio in the tumor
portion of the breast. An indication of the molar
concentrations of P and the metabolites, SoP and 3oHP,
in breast microenvironment was obtained by RIA
measurements of breast nipple aspirate fluids from four
tumorous breasts (Table 1). Of note is that the
concentrations in the aspirate fluid are high, being in the
micromolar range. Although the values for SaP varied
considerably (perhaps due to the lack of specificity of the
SaP antibody), on average the levels of 5P were higher
than the levels of 3aHP; the concentrations of SaP were
5.2342.51 uM and those of 3aHP were 1.03 £+0.08 uM.
The differences in levels suggest active metabolism of the
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] 4-pregnenes 400 i 3(xHP * T 4-pregnenes

7 x

i . *

5o-pregnanes 50P ) .5oc-pregnanes ¥
_ N b i
< ] 5 5 300 s
£ 60 2 8 60-
° h - | © 7
s I £ 2004 g ]
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2 : ] 5]
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Normal
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Figure 3 Differences in P metabolism between paired nontumorous (normal) and tumorous (tumor) human breast tissues ((a) and
(b)) and between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) human breast cell lines (c). In (a) and (c), the conversion to 4-
pregnenes and 5a-pregnanes is presented as percentage of total P metabolism. In (b) the amounts of the specific metabolites, 3aHP
and 5aP, formed from P by tissues is given as nanogram/milligram protein. *, significantly different from normal at P<0.05;

***_ significantly different from normal ((a) and (b)) or from MCF-10A (c) at P<0.001. (Modified from Wiebe et al. 2000, Wiebe &

Lewis 2003.)
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Table 1 Levels of 5aP, 3aHP, and progesterone in breast nipple aspirate fluid samples from tumorous breasts

5aP 3aHP Progesterone
Specimen® (ng/ul) (uM) (ng/ul) (uM) (ng/ul) (uM)
1 1.10 (3.48) 0.38 (1.2) 3.10 (9.87)
2 1.22 (3.86) 0.36 (1.14) 1.72 (5.48)
3 0.33 (1.04) 0.30 (0.95) 5.56 (17.7)
4 3.96 (12.53) 0.26 (0.82) 1.70 (5.41)
Mean £ s.e.m. 1.65+0.79 (5.23+2.51) 0.33+0.03 (1.03+0.08) 3.02+0.91 (9.62+2.89)

@Breast nipple aspirate fluid samples (provided by Dr E. Sauter, University of Missouri, Coumbia, MO, USA), were extracted and
steroids separated chromatographically and measured by RIAs by methods similar to those described (Wiebe et al. 1991).

locally available P (also present at micromolar concen-
trations) and the ability of the cells to alter the
microenvironment in terms of the P metabolites.

To determine if breast cell lines exhibit differences in
direction of P metabolism related to tumorigenicity,
estrogen response and/or ER/P status, four breast cell
lines with varying characteristics were used (Wiebe &
Lewis 2003). Three of the cell lines (MCF-7, MDA-MB-
231, T47D) are known to be tumorigenic in immuno-
deficient mice (Anderson et al. 1984, Soto et al. 1986);
among these, MCF-7 and T47D cells are ER/P-positive
(Horwitz et al. 1975) and estrogen-dependent for
tumorigenicity, whereas MDA-MB-231 cells are ER/P-
negative and develop tumors spontaneously without
estrogen. The fourth cell line, MCF-10A, is ER/P-
negative and considered to be nontumorigenic (Soule
et al. 1990). The results showed that production of
Sa-pregnanes was higher and that of 4-pregnenes was
lower in tumorigenic (e.g. MCF-7) than in nontumori-
genic (e.g. MCF-10A) cells (Fig. 3¢), while differences in
ER/P status did not appear to play a role (Wiebe & Lewis
2003). The Sa-pregnane-to-4-pregnene ratios were 7- to
20-fold higher in the tumorigenic than in the nontumori-
genic cell lines, providing essentially the same pattern of
results as for the tissues.

Overall, the metabolism studies showed that the
altered direction in P metabolism, and hence in
metabolite ratios, was due to significantly elevated
So-reductase and depressed 3o~ and 20a-HSO activities
in breast tumor tissues and tumorigenic cells. It appeared,
therefore, that changes in P-metabolizing enzyme
activities might be related to the shift toward mammary
cell tumorigenicity and neoplasia. The changes in
enzyme activity might reasonably be expected to be
due to changes in expression of the enzyme genes.

Changes in expression of progesterone-
metabolizing enzymes

The above metabolic studies and in vitro enzyme
kinetics studies showed that the activity
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of Sa-reductase is higher, whereas that of the
3a(200)-HSOs is lower in tumor tissue and tumori-
genic breast cell lines than in normal breast tissue and
cell lines. Several factors can account for changes in
enzyme activity. In vivo, changes in enzyme activity
can result from changes in levels of the enzyme due to
changes in expression of the mRNA coding for the
enzyme, or from changes in the milieu in which the
enzyme operates (such as temperature and pH, and
concentrations of cofactors, substrates, products,
competitors, ions, phospholipids, and other mol-
ecules). In in vitro experiments, the milieu is carefully
controlled to be identical between incubations, and
therefore, observed differences can be more easily
ascribed to differences in enzyme amounts.

To determine if the differences in P-metabolizing
enzyme activities between normal and carcinoma
tissues/cells could be attributed to changes in enzyme
mRNA expression, reverse transcriptase (RT)-PCR
studies were carried out on breast tissues and cells
lines. RT-PCR analyses on tissues from 38 patients
showed significantly higher levels of expression of Sa.-
reductase type 1 (SRD5AI) and So-reductase type 2
(SRD5A2) mRNA and significantly lower levels of
expression of the 3a-HSO type 2 (AKRIC3), 3a-HSO
type 3 (AKRIC2) and 200-HSO (AKRICI) mRNAs in
the tumor tissues than in the normal tissues (Lewis
et al. 2004) (Fig. 4a). These results were similar to
those from enzyme mRNA expression studies on breast
cell lines (Wiebe & Lewis 2003), which showed higher
Sa-reductase and lower HSO gene expressions in
tumorigenic than in nontumorigenic cell lines
(Fig. 4b). Other reports also indicate lower HSO
mRNA expression levels in tumor than in normal
portions of breast (Ji et al. 2004) and prostate tissues
(Ji et al. 2003).

Overall, the enzyme activity and expression studies
strongly suggest that So-reductase stimulation and
3a- and 20a-HSO suppression are associated with the
transition from normalcy to cancer of the breast. It is
tempting to speculate that factors in the mammary
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Figure 4 Examples of differences in progesterone-metabolizing enzyme expression levels (a) between paired normal and tumor
breast tissues and (b) between nontumorigenic (MCF-10A) and tumorigenic (MCF-7) cell lines. For simplicity, only expression

levels for 5a-reductase type 1 (5a-R1) and 3a-HSO type 3 (3a-HSO3) are shown; expression levels of the other enzyme genes
(50-R2, 30-HSO2, and 200-HSO) showed similar differences. Insets show representative RT-PCR results (gels) for (a) one tumor
(T) and adjacent normal (N) breast tissue sample, and (b) MCF-10A (10A) and MCF-7 (M7) cells. Differences between normal and
tumor and between MCF-10A and MCF-7 are significant at P<0.001. (See Wiebe & Lewis 2003, Lewis et al. 2004 for details.)

tissue milieu may be responsible for causing these
changes in P-metabolizing enzyme gene expression
and that these changes may be responsible for the
transition. Steroid enzyme activities and gene
expression have been shown in several tissues to be
influenced by factors such as peptide hormones,
cytokines, and steroids. For instance, prolactin acts as
a paracrine/autocrine mutagenic agent in mammary
cells (Clevenger & Plank 1997, Das &Vonderhaar
1997, Schroeder et al. 2002) and inhibits 20a-HSO
expression in corpora lutea (Zhong & Vonderharr
1997). In mammary gland cells, cytokines have been
shown to regulate activity and expression of 33-HSO
(Gingras et al. 1999) and 17B-HSO (Turgeon et al.
1998). The level of expression of 5a-reductase is up-
regulated by estradiol and P in the uterus (Minjarez
et al. 2001) and by Sa-dihydrotestosterone (DHT) in
the prostate (Andersson et al. 1989, Ji et al. 2003). And
the expression of 200-HSO may be altered by P in
corpora lutea (Sugino et al. 1997) and in endometrial
cells (Nakajima et al. 2003). These examples suggest
that the changes in P-metabolizing enzyme activity/
expression that lead to higher ratios of So-pregnane:4-
pregnene may be induced by an altered milieu within
the breast. Identification of the factors that may be
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responsible for changes in P-metabolizing enzyme
expression awaits future investigations.

The studies cited above provided evidence of
selective changes in levels of enzyme activities/expres-
sion and in P metabolites formed in breast carcinoma,
but there was as yet no evidence that P metabolites
exhibited regulatory functions related to cancer. Some
of the same P metabolites had been identified as active
regulatory molecules in other tissues and with respect to
other processes. For example, Sa-pregnanes such as SoP
(Selye 1942), Sa-pregnan-3a-ol-20-one (Majewska
et al. 1986, Kavaliers & Wiebe 1987), and 3aHP
(Wiebe & Kavaliers 1988) elicited marked anesthetic or
analgesic effects via mechanisms involving calcium
channels, the <y-aminobutyric acid(GABA)-benzo-
diazepine—chloride complex and endogenous opioid
systems. 20aHP elevated serum follicle-stimulating
hormone (FSH) and luteinizing hormone (LH) levels
in rats (Gilles & Karavolas 1981), whereas 3aHP
selectively suppressed basal and LH-releasing hormone-
stimulated FSH secretion from primary cultures of
anterior pituitary cells (Wood & Wiebe 1989) by
nongenomic mechanisms at the level of the gonadotrope
membrane, protein kinase C cell signaling pathway, and
intracellular Ca®>" mobilization (Dhanvantari & Wiebe
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1994, Wiebe et al. 1994b, Beck et al. 1997). The next
step was to test the P metabolites for possible effects on
mitogenic and metastatic parameters.

Cancer-related actions of the
progesterone metabolites

Transformation of normal human cells into malignant
cancers involves changes in, or deregulation of, a
number of cell characteristics and processes (Hanahan
& Weinberg 2000). Cardinal among these are: (a)
proliferation rates, (b) cell-to-cell and cell-to-substrate
adhesion, (c) cytoskeletal and adhesion molecules, (d)
receptors that transduce growth regulating signals, and
(e) mitogenic growth signaling pathways. A summary
of the effects of the P metabolites on these parameters
follows.

Effects of progesterone metabolites on cell
proliferation, mitosis, and apoptosis

Uncontrolled cell proliferation is one of the hallmarks
of cancer, and factors which affect cell proliferation
rates are known to affect cancer rates (Cohen &
Ellwein 1990, Pike et al. 1993, Hanahan & Weinberg
2000). Initial studies conducted on MCF-7 cells
showed significant, but opposite, effects on cell
proliferation; 3aHP inhibited whereas SoP-stimulated
proliferation dose-dependently between 10~ ° and
10~ ° M (Fig. 5a). In this concentration range, estradiol
resulted in weak stimulation at 10~ M and either no

effects or slight inhibition at higher concentrations
(Fig. 5a). Stimulation in cell numbers was also
observed when cells were treated with other Sa-
pregnanes, such as Sca-pregnan-3a-ol-20-one, So-
pregnan-20a-ol-3-one, and So-pregnane-3a.,20c-diol,
whereas other 4-pregnenes such as 20o-HP and
4-pregnene-3a,20a-diol resulted in suppression of
cell proliferation similar to that of 3aHP (Wiebe
et al. 2000). Stimulation of cell proliferation with SoP
and inhibition with 3aHP were also observed in all
other breast cell lines examined, whether ER/P-
negative (MCF-10A, MDA-MB-231) or ER/P-positive
(T47D, ZR-75-1) and whether requiring estrogen for
tumorigenicity (MCF-7, T47D) or not (MDA-MB-
231), or whether they are nontumorigenic (MCF-10A)
(Wiebe et al. 2000, Pawlak et al. 2005, G Zhang & J P
Wiebe, unpublished results).

Increases in cell numbers can result not only from
increased rates of cell division, but also from decreases
in rate of cell attrition via programmed cell death
(apoptosis) (Thompson 1995). A balance of prolifer-
ation and apoptosis provides the homeostasis in normal
tissues and alteration in this balance is postulated to set
off a series of changes ultimately leading to malig-
nancy. Studies on cell lines (Zhang et al. 2005,
G Zhang & J P Wiebe, unpublished results) using
several methods of evaluating apoptosis and prolifer-
ation/mitosis showed that 3aHP resulted in significant
increases in apoptosis and decreases in mitosis, leading
to significant decreases in total cell numbers. In
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Figure 5 Effects of 5aP and 3aHP exposure (72 h) on proliferation (cell number) and adhesion (detachment) of MCF-7 and
MCF-10A human breast cell lines. Values are presented as percent in relation to controls (0, C). In (a) and (b) cells were exposed
to 0 or 10°9-107® M 5aP or 3zHP and results show highly significant dose-dependent effects. In (a) MCF-7 cells were also
exposed to estradiol for comparison purposes. The effect of combining 5¢P and 3xHP (each at 10~ M) on proliferation and
detachment of MCF-7 cells are shown in (c); different letters (a, b, and c) on bars denote significant differences (P<0.05) within
proliferation or detachment results. (Modified from Wiebe et al. 2000, Wiebe & Muzia 2001, Pawlak et al. 2005.)
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contrast, treatment with 5aP resulted in decreases in
apoptosis and increases in mitosis. Thus, with respect
to overall cell proliferation effects, the results indicated
that the actions of 3¢HP and 5oP are diametrically
opposed and involve both cell division and cell death.
The results correlated with the metabolism studies in
that the levels of the proliferation-inducing hormone
(5aP) were higher and those of the proliferation-
suppressing hormone (3ocHP) were lower in tumorous
tissue and the reverse was true for normal tissue.

Effects of progesterone metabolites on cell
adhesion

Cellular adhesion is a critical aspect of cancer biology.
In culture conditions, normal cells of mesenchymal or
epithelial origin generally depend on anchoring to a
solid substratum for cell division. This dependence on
support by solid substrates for cell proliferation is
lessened as cells become neoplastic and metastatic
(Raz 1988). Some time during the development of
most types of human cancer, pioneer cells are spawned
that are capable of moving out of the primary tumor
masses and of traveling to distant sites where they may
succeed in founding new colonies. It is these distant
settlements of tumor cells — metastases — that are the
cause of about 90% of human cancer deaths (Sporn
1996). The capability of escaping the primary tumor
mass and colonizing new terrain involves a number of
cellular changes, not the least of which are cell-cell
and cell-substrate adhesion characteristics. To allow
the initial escape, adhesion must be decreased and
attachment severed.

To determine whether P metabolites might play a
role in the acquisition of metastatic potential, their
effects on cell adhesion were examined (Wiebe et al.
2000, Wiebe & Muzia 2001) by quantitative cell—
substrate attachment and detachment assays that had
been developed earlier (Dinsdale et al. 1992) for baby
hamster kidney cells. The first tests were on MCF-7
cells and the results showed that SoP caused significant
dose-dependent decreases in attachment to, and
increases in detachment from, the substratum
(Fig. 5b). The opposite effect was observed with
3oHP, which promoted cell attachment and decreased
cell detachment (Fig. 5b). Similar effects have also
been demonstrated recently in MCF-10A, T47D, and
MDA-MB-231 cells (Wiebe et al. 2004, Pawlak et al.
2005). The opposing actions of 5aP and 3aHP on both
cell anchorage and proliferation strengthen the hypoth-
esis that the direction of P metabolism in vivo toward
higher Sa-pregnane and lower 4-pregnene
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concentrations could promote breast neoplasia and
lead to malignancy.

Proof of principle

Confirmation of the hypothesis that the move from
normalcy to neoplasia in breast cells is influenced by
the in situ increase in the So-pregnane:4-pregnene
ratio requires studies in which Sa-reductase activity is
blocked, as well as paradigms where various
concentrations of a Sa-pregnane and a 4-pregnene
are used in combination and in various temporal
sequences. We have used the 4-azasteroid dutasteride,
a known inhibitor of Sa-reductase types 1 and 2
(Bramson et al. 1997) that has been employed in
trials to inhibit the Sa-reduction of testosterone to
DHT in men with benign prostate hyperplasia (Brown
& Nuttal 2003, Clark et al. 2004) and prostate cancer
(Andriole et al. 2004, Iczkowski et al. 2005). First,
we demonstrated that in MCF-7 cells dutasteride at
10~° M inhibited P conversion to 5o-pregnanes by
>95% and at the same time increased 4-pregnene
production. Next, it was demonstrated that treatment
of cells with P alone, without medium change for
72 h, resulted in significant conversion to So-
pregnanes and concomitant increases in cell prolifer-
ation and detachment. These increases in proliferation
and detachment were blocked in cells incubated with
P plus dutasteride. In turn, the suppression by
dutasteride was overridden by the addition of ScP.
The results are seen as providing proof of the
principle that the effects on proliferation and adhesion
were not due to P, but due to the Sa-reduced
metabolites (Wiebe et al. 2006).

To confirm the hypothesis that the ratio of
Sa-pregnanes:4-pregnenes is a determinant of the
degree of cell proliferation and adhesion, detailed
studies will need to be carried out using various
concentrations of 3aHP and 5aP in combination and in
various temporal sequences. Similar studies could also
determine if the progression toward neoplasia can be
impeded or even reversed by high 3aHP:5aP ratios, i.e.
ratios of P metabolites that favor the 4-pregnenes. Data
from studies in which cells were treated simul-
taneously with both 3aHP and 5aP show that the
independent effects of the individual hormones on
proliferation and adhesion are cancelled out when
present in equal concentrations (Fig. 5c) (Pawlak et al.
2005) and support the view that the overall effects may
depend on the relative concentration of each in the
milieu.
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Effects of progesterone metabolites on
cytoskeletal and adhesion complexes

The transformations in morphology, replication, and
adhesion during the transition from normal to
cancerous cell have been shown to be accompanied
by rearrangements of cytoskeletal and adhesion
structures. The cytoskeletal organization differs
between normal and cancerous cells (Ben-Ze’ev
1985, Holme 1990, Holth et al. 1998) and between
high- and low-metastatic cells (Suzuki et al. 1998). For
example, the level of organization of the actin
cytoskeleton observed in normal cells (Bershadsky
et al. 1995, Helige et al. 1997) is characterized by
higher levels of polymerized actin, whereas transform-
ation to the metastatic condition may be accompanied
by disruption and/or visible disappearance of actin
filaments (Suzuki et al. 1998). Similarly, vinculin, a
protein that is associated with cell-to-cell and cell-to-
substrate adhesion sites (Wilkins & Lin 1982, Luna &
Hitt 1992, Humphries & Newham 1998), may show
alterations. In normal cells, vinculin may be readily
detected, while in highly malignant cell lines its
organization may be significantly altered (Schliwa
et al. 1984) or it may not be detected at all (Sadano et
al. 1992), suggesting that depolymerization or suppres-
sion of vinculin expression may be closely related to
progression of malignancy.

To determine the cellular sites of action of the
proliferation- and detachment-promoting P metabolite,
S5aP, its effects on MCF-7 cell morphology, F-actin
expression, polymerization, and filament distribution,
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as well as vinculin expression and vinculin-containing
adhesion plaque numbers, were examined by immu-
nohistochemistry, morphometry, and western blotting
(Wiebe & Muzia 2001). Figure 6a shows typical
distribution of polymerized actin filaments and
terminal vinculin molecules in a normal cell. Treat-
ment of cells with SoP resulted in dose-dependent
decreases in vinculin-containing adhesion plaques and
vinculin expression (Fig. 6b), as well as in polymerized
actin stress fibers (Fig. 6c). Similar results were
observed with MCF-10A, MDA-MB-231, and T47D
breast cell lines (Wiebe et al. 2004), again confirming
that the P metabolites appear to be able to target a
variety of human breast cells. The results suggest that
the observed decreases in adhesion and increases in
cell proliferation following SoP-treatment may be
related to depolymerization of actin and decreased
expression of vinculin.

Receptors for progesterone metabolites in
human breast cells

Localization and characterization of progesterone
metabolite receptors

The actions of hormonal steroids are considered to
generally require complexing with specific-binding sites
(receptors) on target cells. Therefore, an important step
in elucidating the mechanisms of action of a regulatory
hormone is the identification of such receptors.
To identify potential binding sites for P metabolites in
mammary cells, competition radioreceptor assays were
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Figure 6 Examples of effects of 5¢P on cytoskeletal and adhesion complex molecules in MCF-7 cells. (a) The arrangement of
vinculin-containing adhesion plaques (red) and polymerized F-actin fibers (green) is shown in a control cell. The effects of 5aP
(10~ M) treatment result in marked reduction in vinculin expression (inset) and in number of vinculin-containing adhesion plaques
(b), and depolymerization (insoluble to soluble change) of F-actin (c). (From Wiebe & Muzia, 2001 and unpublished results).
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conducted on nuclear, cytosolic, and membrane frac-
tions of MCF-7 and MCF-10A breast cell lines using
[3 H]-labeled 5aP and 3oHP (Weiler & Wiebe 2000,
Pawlak et al. 2005). The studies showed that binding of
5aP or 3oHP occurs in the plasma membrane fractions,
but not in the nuclear or cytosolic compartments
(Fig. 7a). Saturation and Scatchard analyses indicated
separate high-specificity, high-affinity, low- capacity
receptors for SoP and 3oHP that are distinct from each
other and from the well-studied nuclear/cytosolic P,
estrogen, and androgen and corticosteroid receptors;
binding of [3H]5aP or [3H]3aHP was not displaced by
200 to 500-fold concentrations of P, estradiol, andro-
gens, corticosteroids, and other P metabolites. In turn,
binding of [PH]P or [*H]estradiol to cytosolic or nuclear
fractions was not displaced by excess 5aP or 3aHP. The
binding studies showed that the criteria of high affinity,
specificity, saturability, and association and dissociation
kinetics required of receptor designation (Laduron 1984,
Limbird 1996) were met. The studies thus provided the
first demonstration of the existence of specific P
metabolite receptors. Identifying the presence of distinct
and separate receptors for 3oHP (3oHPR) and SaP
(5aPR) in human breast cells is important in light of the
findings that the two P metabolites exert opposing
actions with respect to cell proliferation and adhesion.

Regulation of progesterone metabolite receptor
levels

Since the action mechanisms of hormonal steroids are
generally initiated by the binding to specific receptors,
the level of cellular response to steroids is limited not

only by the local concentration of the hormone, but
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also by the receptor number (Vanderbilt et al. 1987,
Webb et al. 1992). Due to the potential importance of
S5aP in promoting breast cancer via the binding to its
membrane-based receptors, the role of mitogenic
(estradiol, 5¢P) and anti-mitogenic (3oHP, 20otHP)
endogenous steroids on 5oPR levels in a tumorigenic
(MCF-7) and a nontumorigenic (MCF-10A) breast cell
line were explored (Pawlak et al. 2005). Exposure of
MCEF-7 cells for 24 h to estradiol or 5aP resulted in
significant dose-dependent increases in 5aPR levels
(Fig. 7b), whereas 3oHP or 20cHP resulted in
significant dose-dependent decreases in SoPR levels
(Fig. 7¢c). Treatment with two mitogenic (estradiol or
5aP) or two anti-mitogenic (3aHP or 20aHP)
hormones resulted in additive effects on SPR numbers
(Fig. 7b and c), whereas treatment with one mitogenic
and one anti-mitogenic hormone abolished the
mitogen-induced increases (Fig. 7d). In addition,
preliminary experiments in which MCF-7 cells were
exposed to 1.0 nM estradiol for 24 h showed a 60%
decrease in 3cHPR numbers (Weiler & Wiebe 2000).

The nontumorigenic breast cell line, MCF-10A, was
also shown to posses specific, high-affinity plasma
membrane receptors for SoP that are up-regulated by
estradiol and S5oP and down-regulated by 3aHP
(Pawlak et al. 2005). Estradiol binding was demon-
strated in MCF-10A cell membrane fractions and may
explain the estradiol action in these cells, which
reportedly lack intracellular ER. In both MCF-7 and
MCF-10A cells, the increases in 5¢PR due to estradiol
or 5aP and decreases due to 3aHP or 20a.HP correlated
with respective increases and decreases in cell
proliferation as well as detachment (Pawlak et al.

2005), indicating the functional relevance of
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Figure 7 Binding sites (receptors) for progesterone metabolites in MCF-7 and MCF-10A human breast cell lines. Specific, saturable-
binding sites (receptors) for 5zP and 3aHP are located only in the membrane fraction (a). 5aP receptors (5¢PR) are significantly,
dose-dependently and additively up-regulated by estradiol and 5P (b) and down-regulated by 3aHP and 20aHP (c). The increases
and decreases in 5aPR numbers due to 5aP and 3aHP respectively are abolished when cells are treated simultaneously with
both hormones (d). (From Weiler & Wiebe, 2000 and Pawlak et al. 2005.)
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alterations in SoPR concentrations. Together, the
receptor results suggest that the putative tumorigenic
actions of 5aP may be significantly augmented by the
estradiol-induced increases in S5aP binding and
decreases in 3oHP binding.

Role of progesterone metabolites in regulating
ER levels

Estradiol can influence mitogenicity of ER-positive
mammary cells and therefore the regulation of ER
levels may be important for the progression of
estrogen-dependent mammary neoplasias. Estradiol
and P are known to play a role in modulating ER
concentrations (Shyamala et al. 2002). To determine if
P metabolites affect ER levels, MCF-7 cells were
exposed for 24 h to 5aP, 3aHP, 20aHP, and estradiol,
or combinations of these steroids, and ER concen-
trations were determined in cytosolic and nuclear
fractions by specific-binding of [3H]estradi01 (Pawlak
& Wiebe 2005). Estradiol and 5aP resulted in
significant dose-dependent increases, whereas 3aHP
and 20oHP each resulted in dose-dependent decreases
in total ER as well as inhibition of estradiol- or 5aP-
induced ER levels. In combination, estradiol + 5P or
3aHP +20aHP resulted in additive increases or
decreases respectively in ER numbers.

The results are the first to show that the pro- and
anti-cancer P metabolites have also marked selective
(up or down) regulatory effects on ER levels in ER-
positive MCF-7 breast cancer cells. The suggested
implications for breast cancer are that the stimulatory
and inhibitory effects of SaP and 3aHP respectively on
cell replication and cell detachment might be signifi-
cantly modified by exposure to estradiol, 4-pregnenes,
and Sa-pregnanes and, in turn, that the P metabolites
may significantly affect ER response in estrogen-
targeted cells.

Effect of the progesterone metabolite, 5«P,
on cell signaling pathways

The location of the receptors for 5aP and 3oHP on the
cell membrane suggests involvement of nongenomic
mechanisms of action via cell signaling pathways.
Modes of action via plasma membrane-based binding
sites and cell signaling pathways have been suggested
for estradiol (Watson et al. 1999, Keshamouni et al.
2002, Purves-Tyson & Keast 2004, Simoncini et al.
2004), corticosteroids (Wehling 1997, Croxtall er al.
2000), 3oHP (Dhanvantari & Wiebe 1994, Beck et al.
1997, Wiebe 1997), and neurosteroids such as the P
metabolite, So-pregnan-3a.-0l-20-one (allopregnanolone)
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(Majewska et al. 1986). Signaling pathways that
control cell proliferation and adhesion involve the
mitogen-activated protein kinase (MAPK) pathway
and, in turn, deregulation of this Ras-Raf-MEK-MAPK
cascade plays a central role in human cancer (Chang &
Karin 2001, Pearson et al. 2001, Santen et al. 2002).
Studies on serum-starved MCF-7 cells showed that
treatment with SoP for as briefly as 5 min resulted in
significant, dose-dependent increases in activated
(phosphorylated) MAPK (Erk1/2) (Wiebe et al. 2005,
Cialucu & J P Wiebe, unpublished results). Treatment
with the MEK inhibitor, PD98059, resulted in
significant suppression of the SoP-induced MAPK
activation. Similarly, in concomitant cell proliferation
([*H]thymidine uptake) and detachment assays, SaP
resulted in significant increases in cell proliferation and
detachment, whereas PD98059 significantly sup-
pressed the SaP-induced increases. The data suggest
that the action of 5aP on breast cancer cells involves
modulation of the MAPK signaling pathway. Whether
other cell signaling pathways are involved or SoP and
3oHP act via different pathways in promoting or
inhibiting neoplasia in breast cells remain to be
explored.

Implications of changes in progesterone
5a-reductase activity for androgen action
in breast cancer

Although the majority of primary human breast cancers
express androgen receptors, no direct association with
any androgen and breast cancer growth and progression
has been convincingly established (Bradlow & Sepkovic
2004). How might the up-regulation in 5a-reductase in
neoplastic breast tissue influence androgen metabolism
in the breast and in turn affect the role of transformed
androgens in breast cancer?

Suzuki et al. (2001) have suggested that increased
conversion of testosterone to DHT resulting from
increased So-reductase activity should inhibit cancer
cell proliferation in human breast carcinoma. However,
studies with ZR-75-1 (Poulin et al. 1988, Birrell et al.
1995, Kandouz et al. 1999), T47-D (Birrell et al. 1995,
Ortmann et al. 2002), MDA-MB-231 (Di Monaco et al.
1995, Ortmann et al. 2002), MFM-223 (Hackenberg
et al. 1991), and CAMA-1 cells (Lapointe & Labrie
2001) and with DMBA-induced rat mammary tumors
(Boccuzzi et al. 1995) have shown that both
testosterone and DHT inhibit cell growth more or
less to the same extent. This is in marked contrast to the
actions of P metabolites, where the Soa-pregnanes
stimulate and the 4-pregnenes inhibit cell proliferation.
Also, Sa-reductase type 2 (SRD5A2), which catalyzes
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reduction of testosterone to DHT in androgen-
dependent tissues such as the prostate, is present in
very low levels in breast tissue (Ji et al. 2004, Lewis
et al. 2004) and human breast cancer cell lines (Wiebe
& Lewis 2003). In breast tissue, Sa-reductase type 1
(SRD5A1) is predominant and it may be that P is a
better substrate than testosterone for this isoenzyme.
Overall, current evidence does not appear to support
the notion that increased So-reductase activity/
expression might significantly alter androgen influ-
ences on breast tumor growth.

Implications of progesterone-metabolizing
enzymes for synthetic progestin-based
contraceptives and hormone-replacement
therapy drugs

The synthetic progestins used for contraception and
hormone replacement therapy (HRT) do not behave
like P in terms of their metabolism and probably not
with respect to their actions at the level of the breast
tissue microenvironment. As different formulations
may exhibit marked differences in chemical structure,
metabolism, and pharmacodynamic actions, it is not
possible to generalize about them. The effects of the
drugs at the level of the breast tissue will be governed
by the molecular form and bioavailability, but
unfortunately these are areas that remain unexplored.
At the outset, the level of metabolism may vary greatly,
depending on whether the route of administration is
oral, transdermal, subcutaneous, or intravaginally
(Fotherby 1996). When taken orally, many drugs are
readily metabolized in the gastrointestinal tract and/or
liver and the degree and site of metabolism varies
substantially between different compounds. Some
contraceptive and HRT drugs (for example, desoges-
trel, norgestimate, mestranol, norethisterone acetate,
and ethinylestradiol-3-methyl ether) are in fact pro-
drugs and are converted into their active metabolites
when taken orally (Fotherby 1996, Henzl 2001). On the
other hand, compounds like Nestorone must be
administered parenterally due to their rapid hepatic
metabolism and apparent inactivation (Sitruk-Ware
2004). The different formulations also exhibit great
variation in level of binding to serum proteins (Kuhl
1996, Hammond et al. 2003), potential action via
estrogen, androgen, P, and corticosteroid receptor
binding and consequent androgenic, estrogenic, and
progestational potency, and actions on enzymes (Kuhl
1996). To ascertain the possible role of the contra-
ceptive and HRT drugs in breast cancer regulation via
the P metabolites, it will be necessary to measure their
levels and composition in the breast microenvironment
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to determine their effects on P metabolism in breast
tissue and/or cell lines and to establish whether the P-
metabolizing enzymes can further alter the drugs to
pro- or anti-cancer moieties.

Summary, significance, and future
prospects

Mammary gland cells show cyclicity and respond to
steroid hormones. Normal breast tissue goes through
cycles of imbalance between proliferation and apop-
tosis during menstrual periodicity, pregnancy, and
lactation, but regularly corrects these temporary
imbalances. In cancer, changes have occurred such
that overall increases in cell numbers continue and
result in the development of tumors. The normal
changes are believed to be due to the changes in
concentration of the ovarian hormones, estradiol and P.
Since estrogens have been shown to increase prolifer-
ation in some cells, and because about one-third of
breast cancer patients show some responses to anti-
estrogen therapies, estrogens have been considered the
primary hormonal cause of breast cancer. In time,
however, estrogen-sensitive neoplasms become unre-
sponsive and the patients experience relapse. Overall,
this means the existence of an overwhelming majority
of breast cancers for which the current estrogens based
explanations and therapies are inadequate. Since P
appears to be involved in the normal cyclical changes,
it too has been implicated in breast neoplasia, but its
role has been unclear and no specific categories of
breast cancers have been shown to respond unambigu-
ously to P or to anti-progestins. The end result is that
for the majority of breast cancers, current estradiol/P-
based explanations are inadequate and therapies
ultimately ineffective. Moreover, estradiol and P do
not provide hormone-based explanations for those
breast tissues that do not become cancerous.

The P metabolites, produced within breast tissues, are
put forward as potential candidates that could up- or
down-regulate mitogenic and metastatic processes in
various (perhaps all) mammary tissues, resulting in
maintenance of normalcy or in progression to cancer.
The suggestion is based on the following lines of
evidence and summarized in Fig. 8: (1) Breast tissue,
like many other tissues, has a number of enzymes
capable of catalyzing the conversion of P to various
metabolites, which can be grossly grouped into
Sa-pregnanes and 4-pregnenes. (2) In breast tumor
tissue and tumorigenic cell lines, Sa-reductase activity
and mRNA expression are significantly higher, whereas
3o- and 20a-HSO activities and mRNA expression are
significantly lower than in normal breast tissue and
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Figure 8 Summary of actions and action pathways of the progesterone metabolites 5aP and 3aHP in a stylized human breast cell
and their proposed roles in maintaining normalcy or promoting cancer. Following binding to separate and specific receptors in
the plasma membrane, 5P and 3aHP act via cell signaling, and potentially indirectly via genomic, pathways to effect independent
and opposite changes resulting in increases (1) or decreases () in cell proliferation, apoptosis and adhesion. Maintenance of
normalcy depends on higher levels of 3aHP, and progression to neoplasia and metastasis are promoted by increased levels of 5aP.

nontumorigenic cells. (3) The result is that in para- and
intra-cell environments of localized regions of the
breast, the levels of Sa-pregnanes such as SoP are
increased, whereas those of the 4-pregnenes like 3ocHP
are decreased. (4) Studies using various breast cell lines
have shown that SoP and 3otHP have opposing actions
in terms of cell proliferation and adhesion; SoP
stimulates cell proliferation (through increased mitosis
and decreased apoptosis) and cell detachment, whereas
3aHP suppresses cell proliferation (through decreased
mitosis and increased apoptosis) and detachment. (5)
Separate mechanisms of action of 5aP and 3oHP are
proposed, involving binding to separate, specific, and
novel membrane receptors that are up- or down-
regulated by estradiol and the P metabolites and that
are linked to cell signaling pathways which transcribe
different effects on cytoskeletal and adhesion mol-
ecules. (6) Based on the in vitro results, the paracrine/
autocrine functions of 5P are cancer-promoting and
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those of 3aHP are cancer-inhibiting. Changes from
normal status to progression through increasing degrees
of neoplasia are determined by changes in the relative
concentrations of the pro- and anti-cancer hormones in
the microenvironment. (7) As the P metabolites affect
cell lines with various characteristic (ER/P-positive or
-negative, tumorigenic or nontumorigenic, estrogen-
sensitive or -insensitive), it is suggested that they may
be general determinants of normalcy or cancer of the
human mammary gland (Wiebe 2005). They may thus
provide a new endocrine basis for the majority of human
breast cancers that do not respond to ER-based therapy
and also an alternate one for those that do.

The work on the potential role of P metabolites in
promoting normalcy or cancer of the breast is in its
infancy and a number of issues need to be addressed.
First, all the observations summarized in this review
about the effects/actions of the P metabolites were
made in vitro on breast cell lines in culture.
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To substantiate the hypothesis that the P metabolites
play a role in mammary cancer, it is necessary to
demonstrate their effects in vivo. Such experiments
would test the P metabolites, SaP and 3aHP, for their
independent and combined effects on promotion or
inhibition of growth of mammary tumors in mouse
models resulting from human cell line inoculates
and/or derived spontaneously or by chemical induc-
tion. Encouraging evidence that P metabolites can have
similar effects in vivo and in vitro has come from a pilot
experiment conducted by Drs R Schillaci and P
Elizalde (NRC, Buenos Aires). They showed (personal
communication) that C4HD murine cells inoculated
into BALB/c mice developed into substantial palpable
tumors if treated with SaP (40 mg depot). Tumor
growth rate was about the same (or slightly higher)
with 5aP as with an equivalent dose of medroxypro-
gesterone acetate, a known tumor inducer in this model
(Lanari et al. 1986). Secondly, in terms of potentially
preventing, suppressing, or regressing breast tumors,
more attention (both in vivo and in vitro) needs to be
directed at the presumptive anti-cancer P metabolite,
3oHP, as well as Sa-reductase inhibitors. Thirdly, the
structural characterization of the novel receptors
located in the cell membranes would help in under-
standing the molecular mechanisms of action and in
turn provide a basis in designing 5aPR binding
antagonists and 3oHPR agonists. Fourthly, more
information is needed on the mechanisms of action
and the involved cell signaling pathways, particularly
for 3aHP. Fifthly, with respect to their metastatic
potential, effects of the P metabolites on angiogenesis
and cell-to-cell as well as cell-to-matrix interaction
molecules need to be explored. Sixthly, the identifi-
cation of factors that alter expression of So-reductase
and HSOs, resulting in changes in So-pregnane:4-
pregnene ratios, may give insight into processes that
initiate deregulation of P metabolite balance.

In addition to raising the status of the P metabolites
from waste products to active hormones and to
providing an alternative endocrine-based hypothesis
for human breast cancer, the findings suggest new
biomarkers, diagnostic tests, and therapeutic regimens
that may be applicable to both estrogen-sensitive and
-insensitive normal and cancerous human breast tissues
(Wiebe et al. 2005). Biomarkers and diagnostic tests
might be based on measurements of P metabolite
concentrations in nipple aspirates, changes in
Sa-reductase and HSO activities and gene expression,
and/or S5oP receptor concentrations in biopsies.
Therapeutic regimens might involve (a) actively
decreasing 5oP and increasing 3aHP by blocking Sa-
reductase and stimulating 3o-HSO activities and gene
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expression, (b) blocking the binding of 5aP to its
receptor, and (c) down-regulating SoP receptor and
up-regulating 3aHP receptor levels.

In light of the findings regarding the P metabolites in
relation to breast cancer, it appears pertinent to stress the
importance of the intra- and para-cellular metabonomic
microenvironments generated by the cells and poten-
tially responsible either for maintaining normalcy or for
transition/progression to neoplasia. It would seem
propitious to consider therapies for breast cancer to be
applied directly to the affected tissues via local depots or
targeted infusions rather than the whole-body-every-
tissue mode of current ingestion routes. Thus, itis hoped
that the evidence presented in this review will stimulate
further research into the potential roles of P metabolite
hormones in breast cancer and generate new ideas for its
control, regression, and prevention.
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